376 research outputs found

    A review on the virtual power plant: Components and operation systems

    Full text link
    © 2016 IEEE. Due to the high penetration of Distributed Generations (DGs) in the network and the presently involving competition in all electrical energy markets, Virtual Power Plant (VPP) as a new concept has come into view, with the intention of dealing with the increasing number of DGs in the system and handling effectively the competition in the electricity markets. This paper reviews the VPP in terms of components and operation systems. VPP fundamentally is composed of a number of DGs including conventional dispatchable power plants and intermittent generating units along with possible flexible loads and storage units. In this paper, these components are described in an all-inclusive manner, and some of the most important ones are pointed out. In addition, the most important anticipated outcomes of the two types of VPP, Commercial VPP (CVPP) and Technical VPP (TVPP), are presented in detail. Furthermore, the important literature associated with Combined Heat and Power (CHP) based VPP, VPP components and modeling, VPP with Demand Response (DR), VPP bidding strategy, and participation of VPP in electricity markets are briefly classified and discussed in this paper

    Assessment of energy storage systems as a reserve provider in stochastic network constrained unit commitment

    Get PDF
    Recently, the provision of the reserve from energy storage systems (ESSs) is introduced as a source for ancillary services to address the uncertainties of renewable power generations. The performance of ESSs is analysed while they are applied as a provider of regulation reserves. It has been revealed that previous stochastic models neglect the impact of corrective dispatches, related to the provision of regulation reserves, on the energy level stored in the ESSs, which can lead to large deviations. This study coordinates the stored energy of ESSs to be feasible regarding the dispatches in the base schedule and rescheduling within scenarios. Also, the wind speed fluctuations are considered as the source of uncertainty, and scenarios of wind energy are generated using the Weibull distribution function. The IEEE 24-Bus standard test system is applied for the examination of the proposed model. The results show that the proposed model can manage the performance of ESSs in rescheduling within scenarios, while the coordinated reserve provision of ESSs can remove the concerns about insufficient stored energy of ESSs

    CFA optimizer: A new and powerful algorithm inspired by Franklin's and Coulomb's laws theory for solving the economic load dispatch problems

    Full text link
    Copyright © 2018 John Wiley & Sons, Ltd. This paper presents a new efficient algorithm inspired by Franklin's and Coulomb's laws theory that is referred to as CFA algorithm, for finding the global solutions of optimal economic load dispatch problems in power systems. CFA is based on the impact of electrically charged particles on each other due to electrical attraction and repulsion forces. The effectiveness of the CFA in different terms is tested on basic benchmark problems. Then, the quality of the CFA to achieve accurate results in different aspects is examined and proven on economic load dispatch problems including 4 different size cases, 6, 10, 15, and 110-unit test systems. Finally, the results are compared with other inspired algorithms as well as results reported in the literature. The simulation results provide evidence for the well-organized and efficient performance of the CFA algorithm in solving great diversity of nonlinear optimization problems

    Static Var Compensator allocation considering transient stability, voltage profile and losses

    Full text link
    © 2017 IEEE. The purpose of this paper is to determine the optimal location, size and controller parameters of Static Var Compensator (SVC) to simultaneously improve static and dynamic objectives in a power system. Four goals are considered in this paper including transient stability, voltage profile, SVC investment cost and power loss reduction. Along with the SVC allocation for improving the system transient stability, an additional controller is used and adjusted to improve the SVC performance. Also, an estimated annual load profile including three load levels is utilized to accurately find the optimal location and capacity of SVC. By considering three load levels, the cost of power losses in the power system is decreased significantly. The combination of the active power loss cost and SVC investment cost is considered as a single objective to obtain an accurate and practical solution, while the improvement of transient stability and voltage profile of the system are considered as two separate objectives. The problem is therefore formulated as a multi-objective optimization problem, and Multi Objective Particle Swarm Optimization (MOPSO) algorithm is utilized to find the best solutions. The suggested technique is verified on a 10-generator 39-bus New England test system. The results of the nonlinear simulation indicate that the optimal sizing, location and controller parameters setting of SVC can improve significantly both static and dynamic performance of the system

    Continuous-time co-operation of integrated electricity and natural gas systems with responsive demands under wind power generation uncertainty

    Get PDF
    This paper studies the role of electricity demand response program (EDRP) in the co-operation of the electric power systems and the natural gas transmission system to facilitate integration of wind power generation. It is known that time-based uncertainty modeling has a critical role in co-operation of electricity and gas systems. Also, the major limitation of the hourly discrete time model (HDTM) is its inability to handle the fast sub-hourly variations of generation sources. Accordingly, in this paper, this limitation has been solved by the operation of both energy systems with a continuous time model (CTM). Also, a new fuzzy information gap decision theory (IGDT) approach has been proposed to model the uncertainties of the wind energy. Numerical results on the IEEE Reliability Test System (RTS) demonstrate the benefits of applying the continuous-time EDRP to improve the co-scheduling of both natural gas and electricity systems under wind power generation uncertainty.fi=vertaisarvioitu|en=peerReviewed

    Hybrid power plant bidding strategy including a commercial compressed air energy storage aggregator and a wind power producer

    Full text link
    © 2017 IEEE. In this paper, a commercial compressed air energy storage (CAES) aggregator equipped with a simple cycle mode operation having the ability to work like a gas turbine is coordinated with a wind power aggregator (WPA) as a hybrid power plant to participate in electricity markets. In the proposed approach, the WPA uses the CAES to tackle its stochastic input and uncertainties related to different electricity market prices, and CAES can also use WPA to manage its charging/discharging and simple cycle modes more economically. A three-stage stochastic decision-making method is used to model the mentioned optimization problem which considers three electricity markets including day-ahead, intraday and balancing markets. The problem is formulated as a mixed integer linear programming which can be solved with available commercial solvers. Also, conditional value-at-risk is added to the problem to control the financial risk of the problem and offer different operation strategies for different financials risk levels. The proposed method can provide both bidding quantity and bidding curves to be submitted to the electricity markets which is tested on a realistic case study based on a wind farm and electricity market located in Spain. The results confirm that the proposed method can provide extra profit in joint operation, have more flexibility and reduce the financial risks

    Crustal thickness and Moho character of the fast-spreading East Pacific Rise from 9°42′N to 9°57′N from poststack-migrated 3-D MCS data

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 15 (2014): 634–657, doi:10.1002/2013GC005069.We computed crustal thickness (5740 ± 270 m) and mapped Moho reflection character using 3-D seismic data covering 658 km2 of the fast-spreading East Pacific Rise (EPR) from 9°42′N to 9°57′N. Moho reflections are imaged within ∼87% of the study area. Average crustal thickness varies little between large sections of the study area suggesting regionally uniform crustal production in the last ∼180 Ka. However, individual crustal thickness measurements differ by as much as 1.75 km indicating that the mantle melt delivery has not been uniform. Third-order, but not fourth-order ridge discontinuities are associated with changes in the Moho reflection character and/or near-axis crustal thickness. This suggests that the third-order segmentation is governed by melt distribution processes within the uppermost mantle while the fourth-order ridge segmentation arises from midcrustal to upper-crustal processes. In this light, we assign fourth-order ridge discontinuity status to the debated ridge segment boundary at ∼9°45′N and third-order status at ∼9°51.5′N to the ridge segment boundary previously interpreted as a fourth-order discontinuity. Our seismic results also suggest that the mechanism of lower-crustal accretion varies along the investigated section of the EPR but that the volume of melt delivered to the crust is mostly uniform. More efficient mantle melt extraction is inferred within the southern half of our survey area with greater proportion of the lower crust accreted from the axial magma lens than that for the northern half. This south-to-north variation in the crustal accretion style may be caused by interaction between the melt sources for the ridge and the Lamont seamounts.This research was supported by the National Science Foundation grants OCE0327872 to J. C. M., S. M. C., OCE327885 to J. P. C., OCE0624401 to M. R. N., and NSERC Discovery, CRC and CFI grants to M. R. N.2014-09-1

    Constraints on melt content of off-axis magma lenses at the East Pacific Rise from analysis of 3-D seismic amplitude variation with angle of incidence

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Journal of Geophysical Research: Solid Earth 122 (2017): 4123–4142, doi:10.1002/2016JB013785.We use 3-D multichannel seismic data to form partial angle P wave stacks and apply amplitude variation with angle (AVA) crossplotting to assess melt content and melt distribution within two large midcrustal off-axis magma lenses (OAMLs) found along the East Pacific Rise from 9°37.5′N to 9°57′N. The signal envelope of the partial angle stacks suggests that both OAMLs are partially molten with higher average melt content and more uniform melt distribution in the southern OAML than in the northern OAML. For AVA crossplotting, the OAMLs are subdivided into seven ~1 km2 analysis windows. The AVA crossplotting results indicate that the OAMLs contain a smaller amount of melt than the axial magma lens (AML). For both OAMLs, a higher melt fraction is detected within analysis windows located close to the ridge axis than within the most distant windows. The highest average melt concentration is interpreted for the central sections of the OAMLs. The overall low OAML melt content could be indicative of melt lost due to recent off-axis eruptions, drainage to the AML, or limited mantle melt supply. Based on the results of this and earlier bathymetric, morphological, geochemical, and geophysical investigations, we propose that the melt-poor OAML state is largely the result of limited melt supply from the underlying mantle source reservoir with smaller contribution attributed to melt leakage to the AML. We hypothesize that the investigated OAMLs have a longer period of melt replenishment, lower eruption recurrence rates, and lower eruption volumes than the AML, though some could be single intrusion events.National Science Foundation; CFI; CRC2017-12-2
    • …
    corecore